I M.Tech-I Semester-Regular Examinations-February-2018

ADVANCED DIGITAL COMMUNICATIONS (MICROWAVE & COMMUNICATION ENGINEERING)

Duration: 3 hoursMax. Marks: 60Answer the following questions.

- 1.a) Describe the mathematical model, constellation diagram & block diagram of modulation and demodulation of a QPSK system. Also sketch the transmit waveform for the binary sequence 10110001.
 10 M
 - b) Distinguish between FDMA, TDMA and CDMA schemes.

5 M

(OR)

- 2.a) What is the advantage of differentially encoded phase modulation schemes? Describe the differential encoding and decoding scheme with a neat block diagram.7 M
 - b) What are the applications of TDMA? Also mention its limitations.8 M
- 3.a) What is the advantage of spread spectrum signaling over TDMA & FDMA systems? 7 M
 b) Describe the generation of binary pseudo-random sequences using linear feedback shift registers. 8 M

(OR)

4.a) Compare direct sequence and frequency hopping spread	l
spectrum systems.	7 M
b) Describe the generation and properties of Gold sequence	es
and mention their use in spread spectrum systems.	8 M
5.a) Describe the discrete-time model for a channel with ISI.	•
	7 M
b) Compare linear and decision-feedback equalization	
schemes.	8 M
(OR)	
6.a) Compare the performance of linear, decision-feedback,	
iterative equalization schemes.	7 M
b) Write short notes on adaptive linear equalizer with LMS	
algorithm.	8 M
$7 \rightarrow D_{2}$ fine the single area have the sign to the line much large and	
7.a) Define the single-user hypothesis testing problem and	7
derive the matched filter.	7 M
b) Write short notes on successive interference cancellation	
multiuser detection.	8 M

(**OR**)

- 8.a) Derive the optimum receiver structure for single user detection. 7 M
 - b) Describe and compare successive-interference and parallelinterference cancellation schemes for multiuser detection.

8 M